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Abstract-The problem of natural convection of a non-Newtonian power-law fluid with or without yield 
stress about a two-dimensional or axisymmetric body of arbitrary shape in a fluid-saturated porous medium 
is analyzed on the basis of boundary layer approximation. For a high modified Rayleigh number, similarity 
solutions are obtained by using the fourth-order Runge-Kutta scheme and shooting method for two- 
dimensional bodies without yield stress and a cone with yield stress. The effects of the surface heat transfer 
rate q,(x), the local Nusselt number Nu,, the overall heat transfer rate Q* and the power indices n of fluids 
with the yield stresses on the free convection heat transfer characteristics are discussed. It is found that the 

results depend strongly on the high values of the yield stress parameter n/a at the boundary. 

INTRODUCTION can be obtained from the governing equations by 

Owing to practical engineering interests, the pre- 
using the fourth-order Rung;-Kutta method and thtz 

dictions of natural convection heat transfer rate on 
shooting method. The main objective of this study 

bodies embedded in a fluid-saturated porous medium 
was to predict the flow behavior and the surface heat 

have been extensively studied and reported for New- 
transfer rate of bodies, 

tonian fluids, for example in refs. [l-4]. However, 
relatively little attention has been given to the natural ANALYSIS 

convection of a non-Newtonian fluid in a porous med- 

ium [S-14]. 
To describe the rheological behavior effects of non- 

The present study applies the Al-Fariss modified 
Newtonian fluids flowing through a porous medium, 

Darcy’s law and the Herschel-Bulkley model [8] to the 
a modified Darcy’s law is required. In accordance with 

fundamental flow and energy equations in a porous 
a previous report [8], the model of laminar flow of 

medium, for non-Newtonian fluids with viscosity 
a non-Newtonian power-law fluid with yield stress 

depending strongly on shear rate as 
through a porous medium is used here. According to 

the rheological effect of a non-Newtonian fluid of 

7 = Hj”+z, for7 > z0 

where n, H and z. are rheological parameters to be 

determined from tests and 3 is the shear rate. For 

values of n less than unity, the behavior is pseudo- 

plastic with yield stress, whereas for n greater than 
unity the behavior is dilatant with yield stress. For 

IZ = 1.0 and t0 = 0, it reduces to Newton’s law of 

viscosity. Pascal [12, 131 has analyzed theoretically the 

application of Darcy’s law to shear thinning fluids 
with the yield value and obtained solutions for wall 

flow test analyses. 
In this paper, it is assumed that the modified Dar- 

cy’s law with the boundary layer approximation can 
be applied correctly. This implies that the present solu- 

tions are effective at a high modified Rayleigh number. 
Under these simplifications, the similarity solutions 

Bingham type, the modified Darcy’s law can be writ- 
ten as : 

u= [iir,(_$“)]“” 

i3P I I x > a0 u#O 

i3P I I 7 da,, u=o 
ox (1) 

with k and pL,f being expressed in terms of the rheo- 

logical parameters n, H, D,, E and C’ as : 

and 
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NOMENCLATURE 

C’ tortuosity factor 

Tp 

particle size 

similarity stream function 

9 gravity 
H consistency index 

k permeability 

k ef effective thermal conductivity 

1 reference length 

n power index of non-Newtonian 

fluid 

N4 local Nusselt number, equation (31) 

P pressure 

Ra, modified Rayleigh number, equation 

(13) 
T temperature 

u, t’ Darcian velocity components 

-x, Y coordinates. 

Greek symbols 

a0 Threshold gradient 

&f effective thermal diffusivity 

B coefficient of thermal expansion 

i’ shear rate 

6, momentum boundary layer thickness 

4 thermal boundary layer thickness 

E porosity of porous medium 

V similarity variable 

similarity variable 

; dimensionless temperature 

1 constant 

PL,f effective viscosity 

P density of fluid 

r shear stress 

r0 yield stress 

angle 

; dimensionless stream function 
!A dimensionless yield stress, 

Subscripts 

W wall property 

X local property 

CZ ambient property of porous 

medium. 

Superscript 
* dimensionless property. 

k = D;s3/[72C’(1 -a)‘]. 

The threshold gradient txO in equation (1) is related to 

the yield stress 7” : 

(3) 

ir, 
1” = - 

Jk 
where 1 is a non-dimensional constant to be deter- 
mined experimentally, k is permeability, C’ is the tor- 

tuosity factor, E is porosity and D, is particle size. Bird 

[15] used an average value of C’ = 25/12. 

The physical model and coordinate system are 
shown in Fig. 1. Coordinate x is measured around the 

perpendicular to the body surface at any point. ‘the 
governing equations to be used for conservation of 

mass, momentum and energy are in accordance with 

body surface from the lowest point (0,O) and y 1s set 

the following assumptions : (i) the temperature of the 

fluid everywhere is below the boiling point and over 

. ^ 

the condensating point so that no two-phase zone 

exists ; (ii) the convective fluid and the porous medium 

are in local thermodynamic equilibrium everywhere ; 
(iii) the thermophysical properties of the fluid and 

the porous medium remain constant except in the 
buoyancy term itself; (iv) the free convection flow is 

in uniform steady state, laminar flow ; (v) the fluid is 

a Herschel-Bulkley model fluid; and (vi) the Bous- 

sinesq approximation can be employed. Thus, the gov- 

erning equations are given as : 

Fig. 1, Physical model and coordinate system 

u” = kpx.gb’ 
[T- T,] cos 4 - 

(0 
__ 

&I PLiJB 

(0 
ifi(T-T,)cos4] >p 

P-dd 

u=O if](T-T,,)cos4] <z 
PAS 

(6) 

c?T 3T 

ui-G +“aJ- = 
(7) 

where cos 4 = J[l - (dv/dx)2], m = 0 for two-dimen- 
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sional bodies and m = 1 for axisymmetric bodies, u 

and t’ are the Darcian velocity components in the x 

and y directions, T is the local temperature, cl,r is the 

effective thermal diffusivity of the porous medium and 

/I is the coefficient of thermal expansion. The appro- 

priate boundary conditions are 

J=O T=T, c=O (8) 

y-+m T=T, u=O (9) 

where T, indicates the wall temperature and T, refers 

to the ambient temperature. 

Under the boundary layer approximations, the 
dimensionless equations can be written as : 

a(r*)“u* I a(r*)“c* _ o 

ax* ap (10) 

u* = (&!-Cl)“n ifILLS > n (11) 

u*=O if/OS1 <R 

ae a0 a28 u*- +r,*_ = ~ 
ax* a~* ap (12) 

with the following dimensionless variables intro- 
duced : 

x* = x/l y* = y/I Q = (T- T,)/(T,- T,) 

S = cos 4 r* = r/l 

i2= 
a0 Ra = P,gB(Tw- Tz) “n 1 

p,dVw - T,) ‘I Pef )- a,f 

Ml 
u* = ~ v* zz 

Vl 

Ranacf RaA’2a,f 
(13) 

Note that R is defined as the yield stress parameter 

and Ra, is the modified Rayleigh number. Here I 

denotes the reference length and 7’, indicates the 

ambient temperature. The dimensionless stream func- 

tion cp can be defined to satisfy the continuity equation 

(10) automatically as : 

u*=LT 
(r*)m ay* 

v*=-l!t 
(r*)m 3X* 

(144 

(14b) 

The boundary conditions for solving equations (1 I), 

(12) and (14) are 

y*=o O=l u*=o (15) 

?‘* + cc o=o u*=o. (16) 

To obtain similarity solutions for equations (lO)- 
(12) with boundary conditions, equations (15) and 
(16), the restrictive conditions of the following two 

cases are necessary. 

Case 1 
Consider the fluid as being a power-law fluid with- 

out yield stress. To transform equations (lo)-(12) into 

a set of ordinary differential equations, we introduce 

the following general dimensionless transformations : 

(,.*)2mSI lfl dc 

(18) 

Thus, the dimensionless velocity components will be 

u* = S”lf’(V) (19) 

u* = _ s ’ ‘“f’(v) f.f(rl) 
(r*)msl!n 

1:2 

(49 (r*)2mS”n dt 1 > 
(20) 

Based on equations (13), (14), (16) and (17), we have 

en+f@ = 0 (21) 

.f’ = 0’:” (22) 

j”=O 0=1 atq=O (23) 

,f’=O O=O asq+co (24) 

where the primes indicate differentiation with respect 

to V. 

Case 2 

Consider a cone embedded in a porous medium 

saturated by a power-law fluid with yield stress. The 

following dimensionless variables are introduced : 

cp = [r (~*)2”d:]‘2(a-*)“2”(,/2)/(~) (25) 

’ = (42) [-; (,.*)Z”t @l’-I (26) 

where a = COS$J, r* = x*J(l -a)‘. 
With equations (13), (14) and appropriate bound- 

ary conditions, we have 

B”ff0’ = 0 (27) 

.f’ = 0 ifI@ < n/a (27b) 

whereas equations (23) and (24) still hold true. 

According to Fourier’s law of heat conduction, the 
local surface heat transfer rate q,,,(x) can be written as 

q,(x) = - kef g 
8Y >>=o 
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Table 1. Values of [-Q’(O)] andf(co) in Case 1 for selected values of n 

n: 3.0 2.0 1.8 1.4 1.2 

-B’(O) 0.727492 0.6983038 0.689293 1 0.6652817 0.6487795 
f(m) 1.727492 1.698303 1.6021120 1.386557 I .2688990 

tl: 1.0 0.8 0.6 0.4 0.2 

-0’(O) 0.62756 0.599215 0.5593105 0.4985619 0.3918385 
f(a) 1.142639 1.005741 0.854263 1 0.680778 0.4665254 

Present work Chen and Chen [IO] 
- UWJ2 -B’(O) 

n = 0.8 0.423708989 0.4238 
?I = 1.0 0.443751931 0.4437 
n = 2.0 0.490593371 0.4938 

Present work Chen and Chen [IO] 
f(m)*$ f(a) 

1.4223326 1.421 
1.6169357 1.618 
2.4017589 2.403 

or the surface dimensionless local heat transfer rate 

G(x) is 

qww aa 
qEF(-u) = (Tw_ T,)k,, = -m!‘~‘(o) ay* [ 1 

(29) 

The local Nusselt number Nu, can be expressed as 

hx qwx 
NuX = k,, = k,,(T,-T,) 

(30) 

where h denotes the local heat transfer coefficient and 

kef indicates the effective thermal conductivity of the 

non-Newtonian fluid-saturated porous medium. 

The average heat transfer coefficient h will be 

h = f 
s 

’ hdx = - + (JRa,)Q’(O) 
0 

(31) 

and the average Nusselt number, NIL, can be expressed 

as 

(32) 

Hence, the overall surface heat transfer rate would be 

Q* = 
s 

’ qw(x)[2nl]mW”-“’ dx/[l’ker(Tw- Ta)] (33) 
0 

= (JRa,)[27C]m[W/[1(‘-m),‘(o) o v Y 
s 

’ av ( *)mdx* 

where W is the width of the two-dimensional body. 

RESULTS AND DISCUSSION 

Numerical solution in this study was obtained by 
using the fourth-order Runge-Kutta scheme and the 
shooting method. For Case 1, the step-sizes 
(increments) As = 0.05 and ql, = 15 were used. The 
values of [-O(O)] for various values of power index n 
are shown in Table 1. It can be seen that the agreement 

is good by comparing with the results reported by 

Chen and Chen [lo]. Figure 2 shows the effects of the 

power index n on the dimensionless temperature and 

1.0 

(D 
3 0.8 

jO.6 

v Power index II = 0.4 
* Power index n = 0.8 
- Power index n = 1 .O 
_ Power index n = 1.4 
- - - Power index n 1.8 
~~m~~~~~~~rn~~~~~~~~ power index n = 2.0 
-__ Power index n 

= = 

3.0 

b 
a 
j 0.4 

0.2 

0 
0 1 2 3 4 5 

Similarity variable IJ 

- Power index n = 0.4 
* Power index n = 0.8 
1 Power index n = 1 .O 
_ Power index n = 1.4 
- Power index n = 1.8 
,..........~..*..~~ Power index n = 2.0 

-_-_ - Power index n = 3.0 

0 1 2 3 4 5 
Similarity variable q 

Fig. 2. Dimensionless temperature and velocity profiles vs q 
for various values of power index n in Case 1. 
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0.9 - 

Case 1 

0.3 1 I I I I I I 

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 
Power index n 

Fig. 3. Various qf:,iRa,a or [ ~ 0’(O)] vs n in Case. I. 

velocity distributions. The expressions for momentum 

and thermal boundary layer thickness can be obtained 

from equation (I 8) if the edges of the boundary layers 

are defined as the points where 0 or [f”(q)/f”(O)] have 

a value of 0.01. It is seen from Fig. 2 that the dimen- 

sionless thermal boundary layer thickness S, increases 

as M decreases and the dimensionless momentum 

boundary layer thickness 6,, increases with II. It is 

found that any two-dimensional or axisymmetric 

body of arbitrary geometric configuration is possessed 

of similarity solutions, and equations (29))(33), 

respectively. can be rewritten as : 

where 

y$(x:‘JRu,,, = -G’(O)/J2 (34) 

Nu,l,/Ru,,, = -H’(O)(.Y/l)/ j2 (35) 

IdRa,,’ ’ = -k,~‘uM($)~1 (36) 

Nu/Ra,,“’ = -0’(O)l’j2 (37) 

Q* = (\jRa,,)[27r]“‘[W/I]‘~“‘[-H’(O)] 

(r*)“‘S ’ ” dr* d.u* (38) 1 
where 

In Fig. 3, the abscissa variable is the power index n, 

while the ordinate variable is taken as q:*/JRu,,, such 

0.6 

Fig. 4. The local surface heat transfer rate component 
(I::,/ Ru,, at the boundary. 

that we can easily find that the dimensionless tem- 

perature gradient on the wall [-O’(O)] increases with 

II. Figure 4 shows the surface dimensionless local heat 
transfer rates on a vertical flat plate, a horizontal 

circular cylinder, a vertical cone with 4 = n/3, and a 

sphere computed from equation (30) when n = I .O. It 

is found from Fig. 4 that the vertical flat plate and 

cone at s = 0 are singular points and there are 

maximum heat transfer rates on the surfaces of any 

arbitrary axisymmetric bodies at the lowest point. 

The [-C)‘(O)] values are listed in Table 2 for a wide 

range of power indexes n and yield stress parameters 

R/a for Case 2. for which the step-size A~I = 0.1. and 

q 1 being assumed as increasing with n/u. The dimen- 

sionless temperature profiles 0(q) and the dimen- 

sionless velocity distributionsf”(q) are computed from 

equations (21) and (27) by the fourth-order Runge- 

Kutta scheme for 0/a = 0.01, 0.1, 0.4 and 0.8. The 

results are presented in Figs. 558, respectively, which 

demonstrate the dimensionless thermal boundary 

layer thickness 6, increasing with n/u and the dimen- 

sionless momentum boundary layer thickness 6, 

decreasing with Q/u. It can be found from Figs. 5-8 

that the values of 0 approach zero at values of q 

which increase with the yield stress parameter n/u. In 

addition, the values of f”(q) approach zero at appro- 

priate values of q which increase as Q/u decreases. It 
should be noted that the profiles of the dimensionless 

velocity,f”(y) for II > I .O are quite different from those 

for n < I .O. Equations (29))(33) are rewritten as the 
following equations for Case 2 : 

where 

q,*(s) = -@(~)(a-Q)““’ JRU,,, (39) 

JRa,,, = (JRu,,)(J~)“‘I[(J~)(.~//)“‘] (40) 

Nu, = -0’(O)(u-R)’ ‘“(s/l)JRu,, 

i;* z -o’(o)(u-R)“‘“Ru,~“’ (41) 

Nu = -U’(O)(u-Cl)’ ‘“(jRu,,)(,/3)“‘,/2 (42) 
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Table 2. Values of [-O’(O)] in the Case 2 for selected values of power index n (present wlork : 
[--H’(O)(i -R,‘u)’ “‘/J2]) 

-O’(O) D/a = 0.8 Rja = 0.6 R,;a = 0.4 n/u = 0.1 R/‘u = 0.01 

n = 0.4 0.2360206 0.3293941 0.3978876 0.4766793 0.4964553 
II = 0.8 0.2926623 0.4057788 0.4866598 0.5817668 0.5969870 
?I= I.0 0.3098622 0.4286398 0.5128838 0.6041 I83 0.6253583 
n = 1.2 0.3228418 0.4463470 0.5329725 0.6255285 0.6466230 
?I= I.4 0.3336272 0.4604560 0.5488637 0.6422950 0.6631720 
12 = 2.0 0.3560082 0.4896445 0.5682714 0.6762185 0.6963369 
n = 3.0 0.3773161 0.5172694 0.5757589 0.6117710 0.7257282 

-B’(O) 
Present WangandTu[l4] Present Wang and Tu [ 141 Present Wang and Tu [ 141 

Q/a = 0.8 Q/U = 0.8 Q/N = 0.6 Q/U = 0.6 R/a = 0.4 R,‘a = 0.4 

n = 0.4 0.046053 0.0699 0.074093 0.0965 0.148571 0.156 
II = 0.8 0.075683 0.098 I 0.161831 0.168 0.250066 0.255 
n = I.0 0.097987 0.1 I5 0.1916935 0.196 0.280918 0.282 
n= I.2 0. I 16745 0.130 0.215451 0.218 0.304616 0.305 

1.0 

CD 

B 0.8 

b 

*.~.~.~..~~. 
$ 0.6 

8 
-El 
.I? 0.4 

.1 
0. 0.2 

0 
0 2 4 6 

Similarity variable q 

--o- Power index n = 1 .O 
- Power index n = 1.2 

= - Power index n 1.4 

Power index n = 0.6 

.--.---.--.- Powerindexn=1.4 

3 6 
Similarity variable q 

Similarity variable q 

0.8 

v Power index n = 0.4 
d Power index n = 0.6 
--+I-- Power index n = 0.8 
-*- Power index n = 1 .O 
e Power index n = 1.2 
---D- Power index n = 1.4 

U OS 1.0 1.5 2.0 2.5 ? 
Similarity variable TJ 

Fig. 5. Dimensionless temperature and velocity profiles vs Fig. 6. Dimensionless temperature and velocity profiles vs 
q for various values of power index II when R/u = 0.01 in n for various values of power index n when Q/N = 0.1 in 

Case 2. Case 2. 
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1.0 

a 

! 

g 

0.8 

2 0.6 
L 

3 
.41 0.4 

B 

- Power index n = 0.4 
- Power index n = 0.6 
----- Powerindexn=0.8 
______ Power index n = 1 .O 

Power index n = 1.2 
.----------- Powerindexn=1.4 

0 2 

S~milaritybvariable8q 
10 12 

r - Power index n = 0.4 
w Power index n = 0.6 
--+-- Power index n = 0.8 
-*- Power index n = 1.0 
s-c- Power index n = 1.2 
- Power index n = 1.4 

0.4 0.8 1.2 1.6 i 
Similarity variable q 

Fig. 7. Dimensionless temperature and velocity profiles vs Fig. 8. Dimensionless temperature and velocity profiles vs 
q for various values of power index n when R/N = 0.4 in ‘1 for various values of power index )I when R:tr = 0.8 in 

Case 2. Case 2. 

where 

x [2dJ3( I -au)] W” “1) J2 (43) 

Ru,, = (JR~,,)(JV’( JNk,,‘I). 

The values of h*/v’Ra,, increase with the power index 

II. An open and shut case can be found in Fig. 9 and 

10. The value of I?*/ J Ru,, decreases when the angle C/I 

of a cone increases, R/U increases or the power index 

n decreases in Figs. 9 and IO. The local surface heat 

flux y:/d’Ru,, of u increases with the power index n, 
as shown in Fig. I I, Figure 12 would be valuable to 

choose the best angle of a cone in order to provide the 

maximum overall surface heat flux. 

CONCLUDING REMARKS 

The present study provides the modified Darcy’s to the impermeable axisymmetric or two-dimensional 
law with the Hershel-LBulkley model for solving the bodies, where the surface temperature is constant. 
external problem of natural convection of a non-New- Similarity solutions of two cases were obtained by 
tonian power-law fluid in the porous media adjacent using the fourth-order RungeeKutta method. It was 

- Power index n = 0.6 
- - - - - Power index n = 0.8 

18 
Similarity variable q 

* Power index n = 0.4 
+ Power index n = 0.6 

Power index n = 0.8 
Power index n = 1 .O 
Power index n = 1.2 
Power index n = 1.4 

0.2 0.4 0.6 
Similarity variable TJ 

q Power index n = 1.4 

0.35 1 I I I y 

0.39 0.59 0.79 0.99 

Angle 4 

Fig. 9. Values of /?*/,,‘Ra,, vs (I, for various values of n 
and R. 
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0.6 

~+-.o..o.._ o----o-.~__-o......_... 
0 I 

0.39 0.59 0.79 0.99 
Angle $ 

0.4 
0.4 0.6 0.8 1.0 

$ 

Fig. 10. Values of A*/ JRa,, vs 4 for various VaheS Of n Fig. 12. The overall surface heat transfer rate Q*:vjRu,, vs 4 
and a. for various values of n and of R/a. 

- Angle $ = 1~13 
------ Angle$=n14 

01 I I I I 

0.05 0.25 0.45 0.65 0.85 
x* 

Fig. 11. The local surface heat transfer rate y$I’J Ru,, of a 
cone for various values of n and 6. 

found that the temperature profiles and the velocity 

profiles are strongly dependent on the high yield stress 

parameters. 

REFERENCES 

P. Cheng and I.-D. Chang, Buoyancy induced flows in 
a saturated porous medium adjacent to impermeable 
horizontal surfaces, Ini. J. Hear Mass Trun$er 19, 12677 
1272 (1976). 
J. H. Merkin, Free convection boundary layers on axi- 
symmetric and two-dimensional bodies of arbitrary 
shape in a saturated porous medium, Inr. J. Heat Muss 
Transfer 22, 1461-1462 (1979). 
T. Y. Na and I. Pop, Free convection flow past a vertical 

2.8 

A Power index n = 0.8 ------ Q/a=&1 

2.4 * Power index n = 
0 Power index 
~1 Power index 

2.0 

1.6 ,_*_~-------_.. 

1.2 

.o_----“__o. 

0.8 

plate embedded in a saturated porous medium. Ini. J. 
Engng Sri. 21, 517-526 (1983). 

4. A. Nakayama and H. Koyama, Free convection heat 
transfer over a non-isothermal body of arbitrary shape 
embedded in a fluid-saturated porous medium. J. Hent 

5. 

6. 

7. 

8. 

9. 

10. 

1 I. 

12. 

13. 

14. 

15. 

Transfer 109, 125-130 (1987). 
R. H. Christopher and S. Middleman, Power-law flow, 
through a packed tube, I&;EC Fundaru 4, 422-426 
(1965). 
A. Acrivos. M. J. Shan and E. E. Petersen, Momentum 
and heat transfer in laminar boundary layer flow of non- 
Newtonian fluids past external surfaces, A.1.Ch.E. JI 6, 
312-317 (1960). 
A. Acrivos, A theoretical analysis of laminar natural 
convection heat transfer to non-Newtonian fluids, 
A.I.Ch.E. Jl6, 5844590 (1960). 
T. AL-Fariss and K. L. Pinder, Flow through porous 
media of a shear-thinning liquid with yield stress. Carl. 
J. Chem. Engng 65, 391-404 (1987). 
C. K. Chen and H. T. Chen. Natural convection of non- 
Newtonian fluids about a horizontal surface in a porous 
medium, Energy Rrsourccs T~hnol. .I. 109, I 19--l 23 
(1987). 
C. K. Chen and H. T. Chen, Natural convection of a 
non-Newtonian fluid about a horizontal cylinder and a 
sphere in a porous medium, Int. C’ommun. Ifrut Mu.r.r 
Trunsftir 15, 6055614 (1988). 
C. K. Chen and H. T. Chen, Natural convection of non- 
Newtonian fluids along a vertical plate embedded in a 
porous medium, J. Hm/ Trumfi~. ASME 110, 257 -260 
(1988). 
H. Pascal, Rheological behaviour effect of non-New- 
tonian fluids on steady and unsteady flow through a 
porous medium, Int. J. Nmw. Ar~r!,~tical Mvth. 
Geomech. 7, 2899303 (1983). 
H. Pascal, Nonsteady flow of non-Newtonian fluids 
through a porous medium, [)I/. J. Engrlg Sci. 21, 199m 
210 (1983). 
Wang Chaoyang and Tu Chuanjing, Boundary-layer 
flow and heat transfer of non-Newtonian fluid in porous 
media, Inr. J. Hrrrt FluidFlmv 10, l6&165 (1989). 
R. B. Bird. Transport Phrnonwntr (1960). 


